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Abstract—The Internet of Things (IoT) is gaining increasing
attention. The overall aim is to interconnect the physical with
the digital world. Therefore, the physical world needs to be
measured and translated into processible data. Further, data has
to be translated into commands to be executed by actuators.
Due to the growing awareness of IoT, the amount of offered IoT
platforms rises as well. The heterogeneity of IoT platforms is
the consequence of multiple different standards and approaches.
This leads to problems of comprehension, which can occur during
the design up to the selection of an appropriate solution. We
tackle these issues by introducing an IoT reference architecture
based on several state-of-the-art IoT platforms. Furthermore,
the reference architecture is compared to three open-source and
one proprietary IoT platform. The comparison shows that the
reference architecture provides a uniform basis to understand,
compare, and evaluate different IoT solutions. The considered
state-of-the-art IoT platforms are OpenMTC, FIWARE, Site-
Where, and Amazon Web Services IoT.

I. INTRODUCTION

The Internet of Things (IoT)' is gaining increasing attention.
The idea of IoT is to interconnect the physical world with the
digital world [1]. Therefore, sensors measure parameters of
the physical world as well as changes of it. Consequently, this
information is translated into data processible by computers [2].
Furthermore, the aim of 10T is to act on the physical world
through actuators, e.g., the temperature of a room can be
measured and monitored, if a threshold is exceeded the air-
conditioner is turned on. As soon as the desired temperature is
reached the air-conditioner is turned off. Due to smart home
applications, such as the described example, IoT has already
arrived within our daily life. Along with this development, the
impact of cloud computing rises as well since devices are often
accessed through the cloud and along with the trend towards
smart cities, a huge amount of data has to be processed.

Diverse integration approaches are provided, such as
FIWARE? or Amazon Web Services [oT?. However, the
heterogeneity of different integration approaches leads to
multiple selection problems. The major problem is to find a
suitable IoT platform for a given field of application. Although
IoT platforms provide similar or even equal functionality, their
implementation and the underlying technologies differ. This
leads to diverse concepts and architectures, which complicates
a comparison of multiple platforms. For instance, some IoT

IThe term “Cyber-Physical-System” (CPS) can be used as a synonym since
both terms are recently mentioned coincidentally.

Zhttps://www.fiware.org/

3https://aws.amazon.com/de/iot/

solutions use the term “things” for a component, whereby others
use the term “devices”. It is unclear what “things” exactly are
and if “things” and “devices” are equal. Since there is no
general architecture applied, users have to dive deep into the
platforms’ descriptions and have to understand each architecture
and their components from scratch. This procedure is time-
consuming and foreknowledge is required. The result of the
discussion above is that an abstract reference architecture is
needed to provide a basis for comparing diverse IoT platforms.

In this paper, we tackle these issues by introducing an abstract
IoT reference architecture, which is based on several state-
of-the-art IoT platforms. In contrast to many other reference
architectures, such as the reference models introduced by
Cisco [3] or Fremantle [4], our reference architecture is kept
abstract on purpose to ensure a broad applicability. Therefore,
our reference architecture does not present new concepts,
but provides a more abstract view on the components of
IoT platforms and their possible connections. Many existing
reference architectures provide a detailed view on IoT platforms.
The more detailed each reference architecture gets, the more
heterogeneous they become as a whole. Thus, the aim of our
reference architecture is to build an abstract terminology that
serves as a uniform knowledge basis. Within this paper, we
define each component of the reference architecture and compare
three open-source platforms and one proprietary platform by
mapping their architectures onto our reference architecture.
Thereby, we further ease the comparison of different platforms.
Our comparison shows that the reference architecture is generally
applicable and demonstrates how to understand the investigated
architectures based on our reference architecture.

The remainder of this paper is structured as follows: In
Section II, we introduce the derived IoT reference architecture
defining all components and their possible communication. In
Section III, we compare our reference architecture to four
state-of-the-art IoT platforms. We compare our IoT reference
architecture against existing approaches in Section IV. In
Section V, we conclude the paper and outline future work.

II. IOT REFERENCE ARCHITECTURE

The 10T reference architecture described in the following is
derived from a comparison of several IoT platforms including
open-source as well as proprietary ones. Figure 1 shows
the different components and their intercommunication. For
the sake of simplicity, the components are depicted without
cardinalities. Furthermore, components can also be omitted.
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Fig. 1. IoT reference architecture

For instance, if a cyber-physical system is only used to
measure the parameters of the physical environment, the system
would have no actuators. In contrast to existing reference
architectures, we kept ours abstract on purpose since the
aim of our reference architecture is to serve as a uniform,
abstract terminology, which eases the comparison of different
platforms. To distinguish our terminology from the ones used
by the considered platforms, the component names of our IoT
reference architecture are written in italics in the following.

A. Sensor

A Sensor is a hardware component, which is used to
measure parameters of its physical environment and to translate
them into electrical signals, for example, by measuring the
temperature or humidity of a room. If required, a Sensor may

be configured using software, but cannot run software itself.

Typically, Sensors are connected to or are integrated into a
Device to which the gathered data is sent. Prominent examples
for Devices are RaspberryPis, BananaPis, the Arduino boards,
or BeagleBones. The connection can be established by wires
or wireless, for instance, via radio.

B. Actuator

An Actuator is a hardware component, which can act
upon, control, or manipulate the physical environment, for
example, by giving an optic or acoustic signal. Actuators
receive commands from their connected Device. They translate
electrical signals into some kind of physical action. Just like
Sensors, Actuators are typically connected to or are even
integrated into a Device, whereby the connection can be
established by wires or wirelessly. If required, Actuators can be
configured using software but cannot run software themselves.

C. Device

A Device is a hardware component, which is connected
to Sensors and/or Actuators via wires or wirelessly or even
integrates these components. To process data from Sensors and
to control Actuators, typically software in the form of Drivers

is required. A Driver in our architecture enables other software
on the Device to access Sensors and Actuators. It represents
the first possibility to use software to process data produced
by Sensors and to control Actuators influencing the physical
environment. Thus, Devices are the entry point of the physical
environment to the digital world. Devices are either (i) self-
contained or (ii) connected to another system, e.g., to an loT
Integration Middleware. If they are self-contained, they build
a black box of functionality, e.g., to control an air-conditioner
by evaluating data from a connected temperature Sensor.

D. Gateway

Devices are often connected to a Gateway in cases when
the Device is not capable of directly connecting to further
systems, e.g., if the Device cannot communicate via a particular
protocol or because of other technical limitations. To solve these
problems, a Gateway is used to compensate such limitations by
providing required technologies and functionalities to translate
between different protocols and by forwarding communication
between Devices and other systems. A Gateway is, therefore,
responsible for supporting the required communication tech-
nologies and protocols in both directions and for translating
data if necessary. For instance, a Device communicates with
a Gateway via an 10T protocol, such as ZigBee or MQTT.
When the Gateway receives a message in a proprietary binary
format from the Device, the Gateway translates the information
into JSON or XML and forwards the data to a system in
the world wide web. Likewise, the Gateway may translate
commands into communication technologies, protocols, and
formats supported by the respective Device. The Gateway may
already execute some data processing functions, such as data
aggregation, depending on its processing capabilities.

E. IoT Integration Middleware

The IoT Integration Middleware is responsible for receiving
data from the connected Devices to process the received
data, for example, by evaluating condition-action rules, to
provide the received data to connected Applications, and to
control Devices in terms of sending commands to be executed
by the respective Actuators. A Device can communicate
directly with the IoT Integration Middleware if it supports
an appropriate communication technology, such as WiFi, a
corresponding transport protocol, such as HTTP or MQTT,
and a compatible payload format, such as JSON or XML.
Otherwise the Device communicates over a Gateway with the
IoT Integration Middleware. Thus, from a functional point of
view, it serves as an integration layer for different kinds of
Sensors, Actuators, Devices, and Applications.

The IoT Integration Middleware is not limited to the
functionality described above. It may comprise all kinds
of functionality that is required by a certain cyber-physical
system, for instance, a rules engine or graphical dashboards.
Additionally, the device and user management as well as the
aggregation and utilization of received data may be performed
inside this component. Typically, an IoT Integration Middleware
can be accessed using APIs, e.g., HTTP-based REST APIs.
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Fig. 2. OpenMTC architecture based on [6]

F. Application

The Application component represents software that uses the
IoT Integration Middleware to gain insight into the physical
environment by requesting Sensor data or to control physical
actions using Actuators. For example, a software system that
controls the temperature of a building represents an Application
connected to an loT Integration Middleware. An Application in
this reference architecture can also be another loT Integration
Middleware, for example, to integrate multiple systems.

III. COMPARISON OF THE IOT PLATFORM ARCHITECTURES

We compare our IoT reference architecture to three open-
source platforms and one proprietary IoT platform. Throughout
the mapping, the different naming of the components as well as
their provided functionality have been considered. The detailed
comparison of all technologies is discussed by Guth [5]. In
accordance with the extent of this paper, the comparison and
the major differences of the open-source platforms OpenMTC?,
FIWARE?, and SiteWhere’, and the proprietary solution of
Amazon Web Services® are summarized in the following.

A. OpenMTC

OpenMTC implements an open-source, cloud-enabled IoT
platform. Considering the architecture shown in Figure 2, the
OpenMTC platform is divided into the following building
blocks: the Front- and Back-End as well as the Sensors & Actu-
ators beneath the Front-End, the connectivity between the Front-
and Back-End, Applications positioned on top of the Back-
End and on the right side of the Front-End, and a component
to connect other M2M Platforms to the Back-End. Corre-
sponding to the documentation of the OpenMTC platform, the

4http://www.open-mtc.org/
Shttp://www.sitewhere.org/
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Fig. 3. FIWARE architecture based on [7]

Sensors & Actuators comprise not only Sensors and Actuators
of our reference architecture, but also Devices. Furthermore, the
Devices component of our IoT reference architecture includes
the lowest part of the OpenMTC Front-End, which represents
the communication technologies connecting the Devices to the
platform. Thus, the components Sensor, Actuator, and Device of
our reference architecture are partly overlapping when mapped
onto the OpenMTC architecture. The remaining OpenMTC
Front-End parts, namely Core Features and Connectivity, as
well as the components of the gap between the Front- and Back-
End build the functionality to translate the messages from the
Devices to the middleware and vice versa. Hence, those parts
are encompassed by the Gateway of our reference architecture.
The OpenEPC component in the gap between the Front- and
Back-End already provides functionality, such as filtering and
applying rules. Accordingly, this component is covered by
the IoT Integration Middleware as well. Furthermore, the
OpenMTC Back-End components Connectivity, Core Features,
and partly the Application Enablement are comprised by the
10T Integration Middleware of our reference architecture since
they provide the core logic of the platform. More detailed,
the Connectivity component is responsible for the Device
Management, the Core Features component provides all further
functionality of the platform, and the Application Enablement
manages the connection to Applications. Both Application
Enablement components, and both Application components
of the OpenMTC Back- and Front-End, as well as the Other
M2M Platform component are encompassed by the Application
component of our IoT reference architecture. They represent
all possibly connected further Applications.

Regarding the OpenMTC platform, each component of
our IoT reference architecture is represented. Some of the
components are partly overlapping, which is appropriate to the
abstract definition of our IoT reference architecture following
the explanations in Section II.
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B. FIWARE

FIWARE is an open-source, cloud-based infrastructure for
IoT platforms funded by the European Union and the European
Commission. It is an enhanced OpenStack-based® cloud, which
hosts capabilities and the FIWARE Catalogue, containing a rich
library of components called Generic Enablers (GEs). The GEs
of the [oT part are shown in Figure 3, spread over the [oT Edge
and the IoT Back-End. Furthermore, the Devices are located
below the IoT Edge and the Data Context Broker is positioned
on top of the IoT Back-End. FIWARE follows the approach
to represent only Devices, which have integrated Sensors and
Actuators, and they further separate NGSI’-capable devices.
Accordingly, the Sensor, Actuator, and Device components of
our reference architecture are partly overlapping and comprise
the Device components of the FIWARE architecture. The IoT
Edge further contains the IoT Gateway and the IoT NGSI
Gateway, which are both responsible for establishing and
managing the communication between the devices and the
IoT Back-End. Hence, the IoT Edge is encompassed by the
Gateway of our reference architecture. The core functionality
of the platform is located within the IoT Back-End and the
Data Context Broker, which are consequently comprised by
our [oT Integration Middleware. Our Application component
is not represented within the figure of the architecture, but
FIWARE also enables the connection of Applications through
the Data Context Broker. Thus, our Application component is
likewise covered.

Considering FIWARE, our IoT reference architecture can be
mapped onto it and each component is covered. Like before,
the Sensor, Actuator, and Device components are partly
overlapping, which is appropriate to our definition.

Shttps://www.openstack.org/

"The Open Mobile Alliance defines the standard of Next Generation Service
Interfaces (NGSI) [9]. NGSI are context management function specifications
of the NGSI Enabler, which provides access to information about Context
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C. SiteWhere

SiteWhere is an open-source IoT platform. Its architecture
is shown in Figure 4. It is composed of a core element, where
devices and further Applications can be connected to. Since
SiteWhere does not divide the device component more precisely,
it is comprised by our Sensor, Actuator, and Device components.
The concept of a Gateway is not represented within a particular
component, but it is located between the Devices and the
SiteWhere core element [8]. The core element consists of
the Tenant Engine encapsulating the Communication Engine,
which ensures the internal event handling. Consequently, it is
encompassed by the Gateway of our reference architecture. Our
IoT Integration Middleware covers the Tenant Engine, where
the core functionality of the platform is embedded. Additionally
connected to the SiteWhere core are the Integration component,
REST APIs, Asset SPIs, and Data Storage SPIs, which enable
the connection of further systems and Applications to the
platform.

Regarding SiteWhere, our IoT reference architecture covers
each component of the architecture. As described above, the
Sensor, Actuator, and Device components are overlapping,
since SiteWhere does not further distinguish between them.
Nevertheless, this is appropriate to our definition.

D. AWS IoT

Amazon Web Services IoT (AWS IoT) is a managed cloud
platform for the IoT, its architecture is shown in Figure 5.
Noticeably, they do not have a Device component since
AWS uses the idea of Things. The term Things is used as
a synonym for Devices, which can have integrated Sensors
and Actuators. Following this, the Things component of the
AWS IoT architecture is comprised by the Sensor, Actuator,
and Device components of our reference architecture. The
Gateway component of our IoT reference architecture is not
represented, but located between the Things and the Message
Broker [10]. The core logic of the platform is located within
the Message Broker, Thing Registry, Thing Shadows, Rules
Engine, Security & Identity, and partly the Message Broker, and
hence, they are encompassed by the loT Integration Middleware.
Since AWS is a cloud service provider, multiple data processing



services are already integrated. Likewise, the IoT Applications
component enables the connection of further Applications to
the platform.

Regarding the AWS IoT platform, each component of our
IoT reference architecture is represented. Again, the definition
of the Device component differs from the ones described above,
but it is also appropriate to our definition of the components.

E. Summary of the Comparison

Our IoT reference architecture can be mapped onto each
considered platform. Consequently, each component of our
IoT reference architecture is represented in each investigated
platform. One major difference is that each platform uses the
term “device” in a different way since the granularity of the
device components differs strongly. FIWARE and SiteWhere
mention Sensors and Actuators only within their documentation,
and AWS IoT does not separate between Sensors, Actuators,
and Devices at all. Furthermore, OpenMTC, FIWARE, and
AWS IoT use the device term even for smart devices, where
they have already some kind of logic integrated and assume
partly the functionality of our Gateway.

Noticeably, each IoT platform uses the approach of our
Gateway slightly different: OpenMTC and FIWARE already
integrate a possibility to filter the incoming data, whereby the
remaining solutions comply with our definition. In accordance
to that, the comparison of our IoT Integration Middleware
to OpenMTC and FIWARE showed that it is shifted over
the Gateway. Additionally, the Application components of the
considered solutions demonstrate that each of them provide

the possibility to connect further applications to the platform.

AWS IoT already provides additional integrated Applications
since AWS is a cloud service provider.

IV. RELATED WORK

This section presents work related to our IoT reference
architecture. Therefore, IoT architectures, architecture reference
models, domain models, and taxonomies are considered.

Bauer et al. [11] introduce an IoT reference architecture
describing seven functional components between a device and
an application layer: the Management, Service Organisation,
IoT Process Management, Virtual Entity, IoT Service, Security,
and Communication. Besides the Communication component,
which can be mapped onto our Gateway, the remaining
components build our IoT Integration Middleware. The Device
and Application components are not defined in particular. Since
our approach was to provide an abstract reference architecture
and a definition of all components, this approach leads to a
detailed reference architecture and, thereby, focusses on the
middleware.

The IoT reference architecture introduced by Fremantle [4]
contains five layers. The device layer corresponds with our

Devices, but it is not further divided into Sensors and Actuators.

The relevant transports layer is equal to our Gateway. The
aggregation/bus layer and the event processing and analytics
layer provide the core functionality of an IoT platform. Hence,
they correspond to our loT Integration Middleware. The

client/external communications provide further Applications.
Clearly, the discussed reference architecture corresponds with
ours, but it does not provide an unambiguous definition of
all components. As a result, it does not pursue our goal to
provide an abstract terminology and basis for the comparison
of diverse IoT platforms.

Cisco introduces a seven-layered IoT Reference Model [3].
The Physical Devices and Controllers correspond with our
Devices, Sensors, and Actuators since Cisco does not differ
between those components. The Connectivity layer is equal to
our Gateway. The Edge (Fog) Computing, Data Accumulation,
and Data Abstraction layer represent our loT Integration
Middleware. The Application layer partly corresponds with our
IoT Integration Middleware and our Application component.
Furthermore, the Collaboration and Processes correspond to
our Applications. Again, our IoT reference architecture can
be mapped onto the discussed reference model. Nevertheless,
Cisco’s reference model does not focus on the definition of
the components and is, therefore, not unambiguous, which is
required to support the comparison of diverse IoT platforms.

Zheng et al. [12] introduce a three-layer architecture con-
taining similar concepts as those outlined in our reference
architecture. This work is used in diverse other works by
Wu et al. [13], Atzori et al. [14], and Aazam et al. [15].
The Perception Layer represents the connection point to the
physical world and is responsible, e.g., for gathering the
information and for collaboration. This layer corresponds with
our Sensors, Actuators, and Devices. The Network Layer
takes care of transmitting and pre-processing the gathered
data, which is covered by our Device and Gateway. The
Application Layer provides the core functionality of the
platform. Thus, it represents our IoT Integration Middleware
and Applications. There are further approaches of layered
architectures based on service-oriented architectures introduced
by Atzori et al. [14] [16] and Xu et al. [17]. The review
of those approaches shows that they do provide a basis for
the architectural design, but they do not introduce a common
definition or naming of the components. Consequently, both
approaches do not pursue our goal to provide an abstract
terminology as basis for the comparison of IoT platforms. In
addition, one major contribution of our work is the mapping of
the reference architecture to existing technologies to support
the understanding of those.

Kim et al. [18] introduce a platform model derived out
of diverse applications. The Things (Devices) are connected
through a Gateway or directly to the Platform, and the Platform
is connected to Service and Software Providers and to the
Service User. Both connections outgoing from the platform
are through a RESTful API. Furthermore, the Service User
can communicate directly with a Thing. Besides the user,
all components of this model are covered by our reference
architecture. As above, this approach does not introduce a
definition or uniform naming of the contained components.

The IoT Domain Model introduced by Haller et al. [19]
builds the basis for an IoT Reference Model discussed
by Krco et al. [20]. Haller et al. introduce five concepts:



Augmented Entity, User, Device, Resource, and Service. Even
though the definition of those components is given, it is
not detailed enough for comparing different IoT platforms.
For instance, a device is a hardware component, which is
responsible for monitoring and interacting with real-world
objects. Hence, sensors and/or actuators are already integrated
or connected to the device. Furthermore, a device can provide
the connectivity to IT systems. Since the definition is imprecise,
it is unclear if the device can act as a gateway or communicates
directly with the platform. Hence, this approach is not pursuing
our goal of an unambiguous reference architecture.

Gubbi et al. [21] define an high-level taxonomy for the
components of an IoT platform containing three components:
(i) the hardware, which covers sensors, actuators, and embedded
communication hardware, (ii) the middleware, which covers
on-demand storage and computing tools for data analytics,
and (iii) the presentation, which provides visualization and
interpretation tools. Clearly, this taxonomy is applicable to our
reference architecture as well, but it is not detailed enough
to pursue our goal. Due to the lack of specification of the
components, they can be interpreted diversely. For instance, an
interpretation tool, which is categorized into the presentation
component, can also be understood as a computing tool for
data analytics, which is part of the middleware component.

V. CONCLUSIONS & FUTURE WORK

IoT platforms are gaining increasing attention. However,
due to a missing clear definition of the components within an
IoT platform, we introduced an unambiguous IoT reference
architecture. In contrast to existing reference architectures, the
architecture presented in this paper is more abstract to enable a
uniform terminology and to ease the comparison of platforms.
Within our reference architecture, each component as well as the
communication between them is defined abstractly. Depending
on the circumstances, several components can be combined.
For instance, a Smart Phone represents a Device with integrated
Sensors and Actuators. From a Smart Watch’s perspective, a
Smart Phone can also comprise its Gateway if the watch cannot
communicate directly with the IoT Integration Middleware.

We compared our IoT reference architecture to three open-
source and one proprietary IoT platforms. Respective to the
mappings described in Section III, our IoT reference architec-
ture can be mapped onto each considered IoT solution. The
consideration of multiple platforms showed that the definition
of the components of the architectures contain synonyms,
homonyms, and that they differ strongly within the granularity
of their components. Our unambiguous reference architecture
maps to them and, therefore, cleared the understanding of the
IoT platforms’ components. Our IoT reference architecture
can be used as a basis for the comparison and evaluation of
different [oT solutions. It may ease the selection process and
provides a common basis for the design of a new IoT platform.

Future works could present a more detailed and technical
description of each component including, for instance, a
definition of the cardinalities or communication interfaces of
the reference architecture’s components.
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